A posteriori error estimates of mixed finite element methods for general optimal control problems governed by integro-differential equations
نویسندگان
چکیده
*Correspondence: [email protected] 1School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing, 404000, P.R. China 2College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, P.R. China Full list of author information is available at the end of the article Abstract In this paper, we study the mixed finite element methods for general convex optimal control problems governed by integro-differential equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is discretized by piecewise constant elements. We derive a posteriori error estimates for the coupled state and control approximation. Such estimates are obtained for some model problems which frequently appear in many applications. MSC: 49J20; 65N30
منابع مشابه
Variational Discretization and Adaptive Mixed Methods for Integro-Differential Optimal Control Problems
In this paper, we study the variational discretization and adaptive mixed finite element methods for optimal control problems governed by integro-differential equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discretized. We derive a posteriori error estimates for the coupled state and control approximatio...
متن کاملA Posteriori Error Estimates for Semilinear Boundary Control Problems
In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملA Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Parabolic Equations
In this paper, we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates for both the sta...
متن کامل